
Week 2 - Friday



 What did we talk about last time?
 Interfaces
 Implementing interfaces









 Primarily, interfaces contain abstract methods
 Abstract methods are methods that must be implemented by any 

class that implements an interface
 Unless that class is also abstract, which we'll talk about next week

 Whether in interfaces or abstract classes, abstract methods are 
ones that you have to have (even if what they do is up to you)

public interface Pokeable {
boolean poke(); // Abstract method

}



 In Java, it's not possible to specify a constructor in an interface
 In other words, you can't say how an object is created
 Abstract methods are always regular methods, never 

constructors or static methods



 In addition to abstract methods, constants are commonly found in interfaces
 These constants should be values that are useful in the context of the interface
 Sometimes, the only purpose of an interface is to hold constants, such as the 

interface WindowConstants, which holds named int values describing 
what happens when a windows closes

 These constants are always implicitly public, final, and static
 You don't have to mark them that way
 You can't mark them as private or protected

public interface Dialable {
int NUMBER_LENGTH = 10;
void dial(String number);

}



 To refer to a constant from an interface, you always say the 
name of the interface, followed by a dot, followed by the 
name of the constant

 Since they're constants, you (obviously) can't change them 
with an assignment

int value = WindowConstants.DISPOSE_ON_CLOSE;



 As of Java 8, interfaces can also have default methods
 The interface expects you to implement these methods, but if 

you don't, a default implementation is provided

public interface Punchable {
default boolean wantsPunch() { // Default

return false;
}
void getPunched(Punch punch); // Abstract

}



 Before Java 8, you couldn't put static methods in interfaces at all
 Now, you can put static methods in interfaces, but they aren't 

abstract
 In other words, static methods in interfaces do not require a class 

that implements the interface to make a corresponding method
 Instead, a static method merely does some useful task related to 

the interface
 Note that static variables are not allowed in an interface, so a 

static method can only interact with its parameters



 Static methods can be used as a utility method for an interface
 Here, for example, we provide a method that determines the area 

of a regular polygon
public interface RegularPolygon {

double getLength(); // Length of each side
int getSides(); // Number of sides

static double getArea(RegularPolygon shape) {
return 0.25 * shape.getSides() * 
shape.getLength() * shape.getLength() / 
Math.tan(Math.PI/shape.getSides());

}
}



 Yes!
 It's possible to put an interface inside of another interface
 Doing so simply treats the outer interface like a name-space for 

the inner interface
 You don't want to do this unless the inner interface is only needed 

in the context of the outer interface
 One example is the Map interface which contains an Entry

interface
 Maps (also called dictionaries) store (key, value) pairs
 Classes that implement the Entry interface are able to return both the 

key and the value of a particular entry in the map



 It's also possible to put classes inside of interfaces
 You could make the argument that doing so makes sense for 

classes that are deeply tied to how the interface functions
 But this is done very rarely

 You can define exceptions inside of interfaces
 You can also put enums inside of interfaces
 Like inner interfaces, it uses the interface like a name-space
 It might make sense to put an enum inside an interface if the 

interface requires constants of the enum type





 Like classes, you can use inheritance to extend an interface
 When you do so, the child interface gets all of the required 

methods from the parent interface
 It can also reference the constants and static methods within 

the parent interface
 Consider the following interface:

public interface Defender {
boolean blockWithShield(Attack attack);

}



 We can make a child interface from Defender using the 
extends keyword

 This interface contains the blockWithShield() abstract 
method as well as the parryWithKatana() abstract 
method

 A class that implements this interface must have both

public interface NinjaDefender extends Defender {
boolean parryWithKatana(Attack attack);

}



 Child classes can only have a single parent, but child interfaces 
can extend an unlimited number of parents

 The child interface gets the union of all the abstract methods 
and constants from all the parent interfaces

public interface PunchableNinjaDefender extends 
NinjaDefender, Punchable {
void hateLife();

}



 We can even imagine that you have the same (great)grandparent 
in multiple ways

 We'll use UML class diagrams to show these and other inheritance 
relationships

Defender

SpaceDefender

NinjaDefender

SpaceNinjaDefender





 We can build a tree of operations that models an algebraic 
expression

 For example, a we could have operations like negate, add, 
subtract, multiply, and divide, with constant values that are 
double values

 Any algebraic expression could look like a tree of such 
operations and values



Consider the expression:
-((3 – 17 * 6) / (2 + 5))

5

317

6

2

Add

SubtractMultiply

Divide Negate

Output



 Every object in the expression has a value
 We can make an interface that they all implement that gives 

that value

public interface Value {
double getValue();

}



 Concrete values could be represented by the Number class, 
which holds a constant value

public class Number implements Value {
private double number;

public Number(double number) {
this.number = number;

}

public double getValue() {
return number;

}
}



 Add, subtract, multiply, and divide are binary operations
 In this case, "binary" just means that they take two operands and 

has nothing to do with binary numbers
 They can be represented with an interface that extends the 
Value interface

 It might be useful to be able to retrieve the individual operands 
from any binary operation

public interface BinaryOperation extends Value {
Value getOperand1();
Value getOperand2();

}



public class Add implements BinaryOperation {
private Value operand1;
private Value operand2;

public Add(Value operand1, Value operand2) {
this.operand1 = operand1;
this.operand2 = operand2;

}
public double getValue() {

return operand1.getValue() + operand2.getValue();
}
public Value getOperand1() {

return operand1;
}
public Value getOperand2() {

return operand2;
}

}



 Negate is the only unary operation that we have, but it's wise 
to plan for more

 Unary operations can be represented with an interface similar 
to BinaryOperation

public interface UnaryOperation extends Value {
Value getOperand();

}



public class Negate implements UnaryOperation {
private Value operand;

public Negate(Value operand) {
this.operand = operand;

}

public double getValue() {
return -operand.getValue();

}

public Value getOperand() {
return operand;

}

}



 It's easy to add Subtract, Multiply, Divide classes that implement the 
BinaryOperation interface
 We could even add a Modulus class or a Power class

 Likewise, the UnaryOperation interface could be implemented with a 
BitwiseComplement class or others

 Note that Add, Subtract, Multiply, and Divide differ only by the 
operation they do in getValue()
 They all have to declare operand1 and operand2
 It might make more sense for BinaryOperation to be an abstract class instead of 

an interface
 Abstract classes are like interfaces except that they can contain methods and data and 

can be inherited from
 Serious designers think a lot about how to make the right trade-offs



 The original tree could be modeled with the following code:

public class Math {

public static void main(String[] args) {
Multiply multiply = new Multiply(new Number(17), new Number(6));
Subtract subtract = new Subtract(new Number(3), multiply);
Add add = new Add(new Number(2), new Number(5));
Divide divide = new Divide(subtract, add);
Negate negate = new Negate(divide);

System.out.println("Answer: " + negate.getValue());
}

}





 On Monday, we'll talk about class inheritance



 Read Chapter 11
 Keep working on Project 1


	COMP 2000
	Last time
	Questions?
	Project 1
	Defining Interfaces
	Abstract methods
	No constructors!
	Constants
	Accessing constants
	Default methods
	Static methods
	Static method in interface example
	Interfaces inside of interfaces?
	Weird stuff
	Extending Interfaces
	Interfaces can extend other interfaces
	Child interface
	As many as you want!
	You can have the same ancestor multiple ways
	Interface Examples
	Operations
	Example tree
	What interfaces would be useful?
	Numbers are just about that simple
	Binary operations
	Example Add class
	Unary operations
	Example Negate class
	More classes
	Final usage of all the new classes
	Upcoming
	Next time…
	Reminders

