
Week 2 - Friday



 What did we talk about last time?
 Interfaces
 Implementing interfaces









 Primarily, interfaces contain abstract methods
 Abstract methods are methods that must be implemented by any 

class that implements an interface
 Unless that class is also abstract, which we'll talk about next week

 Whether in interfaces or abstract classes, abstract methods are 
ones that you have to have (even if what they do is up to you)

public interface Pokeable {
boolean poke(); // Abstract method

}



 In Java, it's not possible to specify a constructor in an interface
 In other words, you can't say how an object is created
 Abstract methods are always regular methods, never 

constructors or static methods



 In addition to abstract methods, constants are commonly found in interfaces
 These constants should be values that are useful in the context of the interface
 Sometimes, the only purpose of an interface is to hold constants, such as the 

interface WindowConstants, which holds named int values describing 
what happens when a windows closes

 These constants are always implicitly public, final, and static
 You don't have to mark them that way
 You can't mark them as private or protected

public interface Dialable {
int NUMBER_LENGTH = 10;
void dial(String number);

}



 To refer to a constant from an interface, you always say the 
name of the interface, followed by a dot, followed by the 
name of the constant

 Since they're constants, you (obviously) can't change them 
with an assignment

int value = WindowConstants.DISPOSE_ON_CLOSE;



 As of Java 8, interfaces can also have default methods
 The interface expects you to implement these methods, but if 

you don't, a default implementation is provided

public interface Punchable {
default boolean wantsPunch() { // Default

return false;
}
void getPunched(Punch punch); // Abstract

}



 Before Java 8, you couldn't put static methods in interfaces at all
 Now, you can put static methods in interfaces, but they aren't 

abstract
 In other words, static methods in interfaces do not require a class 

that implements the interface to make a corresponding method
 Instead, a static method merely does some useful task related to 

the interface
 Note that static variables are not allowed in an interface, so a 

static method can only interact with its parameters



 Static methods can be used as a utility method for an interface
 Here, for example, we provide a method that determines the area 

of a regular polygon
public interface RegularPolygon {

double getLength(); // Length of each side
int getSides(); // Number of sides

static double getArea(RegularPolygon shape) {
return 0.25 * shape.getSides() * 
shape.getLength() * shape.getLength() / 
Math.tan(Math.PI/shape.getSides());

}
}



 Yes!
 It's possible to put an interface inside of another interface
 Doing so simply treats the outer interface like a name-space for 

the inner interface
 You don't want to do this unless the inner interface is only needed 

in the context of the outer interface
 One example is the Map interface which contains an Entry

interface
 Maps (also called dictionaries) store (key, value) pairs
 Classes that implement the Entry interface are able to return both the 

key and the value of a particular entry in the map



 It's also possible to put classes inside of interfaces
 You could make the argument that doing so makes sense for 

classes that are deeply tied to how the interface functions
 But this is done very rarely

 You can define exceptions inside of interfaces
 You can also put enums inside of interfaces
 Like inner interfaces, it uses the interface like a name-space
 It might make sense to put an enum inside an interface if the 

interface requires constants of the enum type





 Like classes, you can use inheritance to extend an interface
 When you do so, the child interface gets all of the required 

methods from the parent interface
 It can also reference the constants and static methods within 

the parent interface
 Consider the following interface:

public interface Defender {
boolean blockWithShield(Attack attack);

}



 We can make a child interface from Defender using the 
extends keyword

 This interface contains the blockWithShield() abstract 
method as well as the parryWithKatana() abstract 
method

 A class that implements this interface must have both

public interface NinjaDefender extends Defender {
boolean parryWithKatana(Attack attack);

}



 Child classes can only have a single parent, but child interfaces 
can extend an unlimited number of parents

 The child interface gets the union of all the abstract methods 
and constants from all the parent interfaces

public interface PunchableNinjaDefender extends 
NinjaDefender, Punchable {
void hateLife();

}



 We can even imagine that you have the same (great)grandparent 
in multiple ways

 We'll use UML class diagrams to show these and other inheritance 
relationships
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 We can build a tree of operations that models an algebraic 
expression

 For example, a we could have operations like negate, add, 
subtract, multiply, and divide, with constant values that are 
double values

 Any algebraic expression could look like a tree of such 
operations and values



Consider the expression:
-((3 – 17 * 6) / (2 + 5))
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 Every object in the expression has a value
 We can make an interface that they all implement that gives 

that value

public interface Value {
double getValue();

}



 Concrete values could be represented by the Number class, 
which holds a constant value

public class Number implements Value {
private double number;

public Number(double number) {
this.number = number;

}

public double getValue() {
return number;

}
}



 Add, subtract, multiply, and divide are binary operations
 In this case, "binary" just means that they take two operands and 

has nothing to do with binary numbers
 They can be represented with an interface that extends the 
Value interface

 It might be useful to be able to retrieve the individual operands 
from any binary operation

public interface BinaryOperation extends Value {
Value getOperand1();
Value getOperand2();

}



public class Add implements BinaryOperation {
private Value operand1;
private Value operand2;

public Add(Value operand1, Value operand2) {
this.operand1 = operand1;
this.operand2 = operand2;

}
public double getValue() {

return operand1.getValue() + operand2.getValue();
}
public Value getOperand1() {

return operand1;
}
public Value getOperand2() {

return operand2;
}

}



 Negate is the only unary operation that we have, but it's wise 
to plan for more

 Unary operations can be represented with an interface similar 
to BinaryOperation

public interface UnaryOperation extends Value {
Value getOperand();

}



public class Negate implements UnaryOperation {
private Value operand;

public Negate(Value operand) {
this.operand = operand;

}

public double getValue() {
return -operand.getValue();

}

public Value getOperand() {
return operand;

}

}



 It's easy to add Subtract, Multiply, Divide classes that implement the 
BinaryOperation interface
 We could even add a Modulus class or a Power class

 Likewise, the UnaryOperation interface could be implemented with a 
BitwiseComplement class or others

 Note that Add, Subtract, Multiply, and Divide differ only by the 
operation they do in getValue()
 They all have to declare operand1 and operand2
 It might make more sense for BinaryOperation to be an abstract class instead of 

an interface
 Abstract classes are like interfaces except that they can contain methods and data and 

can be inherited from
 Serious designers think a lot about how to make the right trade-offs



 The original tree could be modeled with the following code:

public class Math {

public static void main(String[] args) {
Multiply multiply = new Multiply(new Number(17), new Number(6));
Subtract subtract = new Subtract(new Number(3), multiply);
Add add = new Add(new Number(2), new Number(5));
Divide divide = new Divide(subtract, add);
Negate negate = new Negate(divide);

System.out.println("Answer: " + negate.getValue());
}

}





 On Monday, we'll talk about class inheritance



 Read Chapter 11
 Keep working on Project 1
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